

Deepwater hydrate detection and characterization with Acoustic Resonance Technology (ART)

FFU-Seminar 2025 Johannes Dahl TSC Subsea

Issues Caused by Hydrates

- Efficiency Loss: Depressurization or chemical inhibitors may be needed to prevent hydrates.
- Flow Blockage: Hydrate plugs can block fluid flow, reducing production or causing shutdowns.
- Pressure Buildup: Hydrates increase pipeline pressure, risking damage, leaks, or ruptures.
- Corrosion: Hydrates accelerate corrosion, shortening pipeline lifespan and raising maintenance costs.

Alternative Flow Assurance Practices

In a recent client survey, it was found that long production shutdowns in deepwater operations are uncommon. As a result, operators are now more willing to reduce CAPEX by shifting from expensive prevention to efficient, rapid-response technologies. This change focuses on mitigation, addressing issues as they arise rather than relying on heavy upfront investments

Traditional Solutions:

• Expensive production loops, insulation, and chemical inhibitors.

New Approach :

- New replacement technology and remediation techniques
- Develop inspection tool technologies for rapid hydrate detection.

The Mission & Challenges

- Technique must be able to distinguish hydrate from gas or liquid
- Technique must penetrate 3-Layer
 Polyethylene (3LPE) 3.1 mm coating of the 8"
 OD Pipe
- Minimal seabed intervention, specified Line submerged under seabed up to 1-2m depth
- High-speed cost-effective ROV deployed method required with full line coverage
- Identify the exact location, size and distribution of suspected hydrate plug within 12km stretch of a water injection line off W. Africa

Pipeline Details	
Pipeline Identification	WI-8
Pipeline OD w/out Coating (mm)	235.0 / 244.5 (Variable)
Wall Thickness (mm)	15.9
Coating Thickness (mm)	3.1
Coating Type	3LPP
Pipeline OD with Coating (mm)	241.5 / 250.7
Length of Section for Inspection (km)	12 km
Water Depth (m)	1,300

Challenge 1

Technique must be able to distinguish hydrate from gas or liquid

Overview ART[®] Methodology

ART – Original Development

First industrial subsea application of the ART technology was to map air/oil/water levels in a sunken battleship from WW2.

The inspection was carried out to prepare a plan for replacing oil with water in the ballast tanks

Observations from Previous Testing

- Water and Ice (Hydrate) have very similar density
- Hydrates will typically absorb more
 acoustic energy than water
- ART is highly sensitive to changes in attenuation and therefore changes in medium

Figure 2. Example of how an ART detector would work.

Hydrate Detection Testing

Algorithms developed to differentiate water – gas – hydrate presence

Backwall Echo

•Reflection of an acoustic signal from the far side of the pipeline.

Decay Rate

•Refers to how quickly the acoustic signal diminishes after entering the pipe bore and is influenced by the medium (e.g., water, gas/air, hydrate/ice).

Lab Testing in Norway

- Lab testing proved that the current configuration offered robust and repeatable results
- However, a new system system needed match the ROV speed and maintain the robustness and repeatability

Challenge 2

Minimal seabed intervention, and high-speed ROV deployed method with full line coverage

ART vPush Development

Pipeline Condition:

- Semi-buried pipeline.
- Client cleaned only the top 9-3 o'clock area.

Tool Adaptation:

• Tool and sensors designed to account for limited access.

Cost Savings:

- Reduced dredging time.
- Maintained tool robustness and reliability

ART vPush Development

Fast Deployment:

- Easy to integrate, ROV-operated solution.
- Designed and built in just 12 weeks.

Transducer Design:

• Circumferentially and axially offset transducers. Full coverage and minimizes signal interference.

Monitoring System:

• 4 cameras to monitor each transducer's path.

Tracking

• Odometer for accurate location-encoding of data.

Robust & Stable Design:

• Stiff frame and a compliant handle maintains transducer alignment and eliminates ROV-induced 'wobble.'

Lab Testing in Norway

vPush incorporated four sensors running on three trigger points;

- First, back wall echo monitoring
- Second, echo threshold
- Third, echo decay

Challenge 3

Identify the exact location, size and distribution of suspected hydrate plug

High-Speed Hydrate Detection

- 12 km continuous scanning in 33 hrs
- Hydrate plug located and sized
- High-speed data collection minimising ROV & Vessel time
- Through-coating inspection, eliminates coating removal/reinstatment
- Minimal dredging requirements

Results: High-Speed Hydrate Detection

Offshore Validation Results

[decay/reverberation]

Thank You! Questions?

Technologies

Applications

Robots