Integration of science and technology enables new possibilities for NTNU in exploring the ocean space

Asgeir J. Sørensen and Geir Johnsen

Norwegian University of Science and Technology E-mail: Asgeir.Sorensen@ntnu.no http://www.ntnu.no/aur-lab

Photo: NTNU AUR-Lab

- Background and overview
- Research fields
- Dynamic Positioning of ROV
- AUR-Lab Roadmap

AUR-Lab Officially Opened 23 August 2011 by Trond Giske, Minister of Trade and Industry

Applied Underwater Robotics Laboratory

AUR-Lab

NTNU Research Groups:

- Department of Marine Technology
- •Department of Biology incl. UNIS and CalPoly/Delaware
- •Department for Archaeology and Religious Studies
- Department of Engineering Cybernetics
- Department of Electronics and Telecommunications
- Museum of Natural History and Archeology
- Centre for Ships and Ocean Structures (CeSOS)

Applied Underwater Robotics Laboratory

AUR-Lab

Scientific focus areas:

- Development of technology for guidance, navigation and control of underwater vehicles (ROVs and AUVs)
- Environmental monitoring and mapping at sea surface, water column, and sea bed
- Operations under ice in the arctic
- Study of any object of interest (bio-geochemical objects)
- Inspection/surveillance for environmental agencies, oil industry, ecotoxicology
- Evaluation of seabed properties and habitat
- Underwater acoustic communication
- Complex deepwater underwater operations including inspection and intervention
- Deep water archeology

NTNU Research Vessel Gunnerus

NTNU's research vessel, R/V Gunnerus, was put into operation in spring 2006. The ship is fitted with a dynamic positioning system and a HiPap 500 unit, optimal for ROV operations and the positioning of any deployed equipment.

The vessel is arranged with wet lab, dry lab and a computer lab in addition to a large aft deck.

Accommodation comprise three double berth scientific personnel cabins and three single berth crew cabins. The large mess hall functions as a lecture room for 25 people.

ROV Minerva

Observation class

- − ~400 kg
- 3CCD camera
- 3 "regular" ROV-camera
- 5-function manipulator
- 1-functions manipulator
- Scanning sonar
- Altimeter
- ~600 meter cabel on winch (fiber)
- HiPAP and DVL for positioning
- Control container

ROV SUB-Fighter 30k

Innovation and Creativity

AUV REMUS 100

- Marine Sonics 900 kHz Side Scan sonar
- Teledyne RDI 1.2 MHz up/down DVL/ADCP
- Wet Labs ECO Triplet puck
- Aanderra Dissolved Oxygen Optode
- Neil Brown CT sensor
- LBL navigation system
- Imagenex Delta T multibeam

Navigation:

Inertial Navigation GPS/HiPAP (tracking,

aiding)

Communications:

Acoustic modem, Wi-Fi,

Iridium

REMUS support from Horten

REMUS training in Horten

REMUS 100 with HUGIN Technology

- HUGIN navigation system (NavP) with HG1700 IMU
- HUGIN Payload system for initialization and supervision of payload sensors
- Accurate time synchronization and time stamping
- Sophisticated acoustic trigger synchronization hardware
- HiPAP tracking and position aiding
- SW developer kit (SDP) for free programming of customer developed GNC and sensor packages

Available options:

- UTP navigation (single transponder navigation technique)
- NavLab Navigation post-processing toolbox
- Post Mission Analysis tools

NTNU Sletvik Field Station Demonstrator

In area of Tronheimsfjorden

Typical projects:

- •Photomosaics at sea-floor
- Underwater hyperspectral imaging
- PAM fluorometers
- •CO₂ seepage detection
- Detection of gases and trace metals
- Testing of AUV

TBS and Hopavågen - underwater robotics test site

Background for AUR-Lab

Established 2009 to create a new multi- and inter-disciplinary research arena at NTNU

Knowledge base

- Depts. of Marine Technology, Engineering Cybernetics and Electronics and Telecommunications
 - Guidance, navigation and control of ships, ocean structures and underwater vehicles
 - Robotics
 - Operational experience with ROV
 - System design and configuration
 - Instrumentation and methods for processing data
- Department of Biology
 - Operational experience with ROV and AUV including arctic
 - Instrumentation (optics)
 - Mission planning
- Dept. of Archaeology and Religious Studies
 - Operational experience with ROV

Technology needs

- Depts. of Marine Technology,
 Engineering Cybernetics and
 Electronics and Telecommunications
 - Test platform
 - Prototyping
 - Advanced methods for processing data
- Department of Biology
 - Instrument carriers
 - Increased vehicle capabilities
 - Increased quality of services
 - Interpretation of data
- Dept. of Archaeology and Religious Studies
 - New sampling methods
 - Increased quality of service

Integrated platform

Air:

Satellites & airplanes

Multi- & hyperspectral imagers

Sea surface:

Ships

Acoustic, chemical & optical sensors

Water column:

AUV and gliders
Acoustic, chemical &
optical sensors

Sea floor:

ROV, AUV, crawler & lander Acoustic & optical sensors

3 D coverage: Bio-geo-chemical OOI:

Physics (eg. T, S, D, E)
Chemistry (O₂, CO₂)
Biology (plankton & benthos)
Geology (habitat, substrate & minerals)

Images: By permission of MBARI

- Background and overview
- Research fields
- Dynamic Positioning of ROV
- AUR-Lab Roadmap

Deep water archaeology

NTNU is a leading institution within deep water archaeology; discovery and investigation of cultural heritage in the deep sea.

NTNU operates a special-purpose workclass ROV that was developed for the Ormen Lange project, world's first excavation of a shipwreck in deep water using only ROV.

Marine biology research

Ocean Space Research

Marine surveillance systems

Energy from the ocean

Marine ecosystems

Eco-toxicology

Marine archaeology and cultural history

Coastal zone development and infrastructure

Infrastructure

RV Gunnerus

Trondhjem Biological Station

Marine Technica Laboratory

ACE

NTNU and SINTER

ROV- sampling deep water corals

Offshore Inspection Maintenance Repair (IMR) operations including arctic

Marine monitoring and surveillance

Deep water mining

Offshore aquaculture

Dynamic Positioning System for ROV Minerva

Goal: Make control system with user interface for dynamic positioning (DP) and tracking for use in real ROV missions.

Process: A team of MSc students, PhD candidates and Post Docs has been working on this since 2010 with monthly cruises.

The control system is tested on a simulation model before deployment on ROV Minerva.

The control system is deployed and tested on the ROV Minerva during monthly cruises with R/V Gunnerus in the development stages.

DP Control Platform

- Compact RIO (cRIO) from National Instruments is the controller platform
- Measurement signals are fed to the cRIO via serial ports.
- •The control software is deployed on the cRIO but a host PC provides the user interface.

DP Control Architecture

ROV path following Demo cruise 16th February 2011

Hybrid control enables multi-objective operations

ROV Roadmap

www.ntnu.no \(\frac{1}{2}\)

AUV Roadmap

AUR-Lab bridges the gap from theory to practice

Theory - Simulation - Model and full scale experiments - Missions

Conclusion

- AUR-Lab will:
 - Develop new knowledge by multi and interdisciplinary research groups at NTNU
 - Provide operational infrastructure for underwater operations for NTNU and externals
 - Educate MSc and PhD
- We have plans for further investments in sensors, AUVs, ROVs and research infrastructure
- We welcome cooperation with industry and research partners nationally and internationally

