

Troll C Subsea

Complex Subsea Repair of Manifold N1

Content

- Background
- Evaluation Phase
- Design & Verification Phase
- Execution Phase
- New Technology
- Final Status

Background

Manifold N1 location at Troll C Subsea

Incident Summary

Template N1 Damage Location

Crack in 6" Production Pipe

- Crack in pipe allowing pipeline content leaking to sea.
- One valve as barrier between open sea and 10" Test Header pipeline.
- Barriers not in accordance with requirements, Test Header pipeline shut down.

Evaluation Phase

Concept Evaluation

• New Manifold

• Repair of 6" Pipe

Morgrip End Connector

Manifold Repair Location

6" Pipeline running from Well
 Mandrel to 6" Ball Valve to be cut
 and plugged (permanent passive
 barrier to be installed).

Wellhead Mandrel

Concept Evaluation towards DG2

New Manifold

- Budget DG21530 MNOK
 - Ex. production loss
- Project Schedule 28 Months
- Overall **low** risk level
 - Disconnection of all flowlines and umbilicals
 - Long shut down period for Manifold N1 and N2 (7 wells for min. 4 months)

Subsea repair of 6" Pipe

- Budget DG2214 MNOK
 - Ex. Production loss
- Project Schedule 15 months
- Overall **medium** risk level
 - Small bore pipe plugging
 - Document remaining design life
 - Access to repair

Recommended Solution

Design & Verification Phase

Manifold Stress Assessment

- The following stress assessment were performed to document further service life for the piping system in the manifold;
 - Simulation of the accident
 - Stress level assessment in pipe after incident
 - Estimate of allowable production stresses
 - Valve strength assessment

· Animation: movie troll-c

Material Evaluation

- HISC Evaluation:
 - HISC evaluation for N12. An assessment of the risk for hydrogen induced stress cracking
 - Conclusion:
 - There are no new open sharp cracks in the welds caused by the accident.
 - Restriction Introduced
 - No significant loading on the 6" pipe from the repair.
 - Shielded from seawater at Morgrip location (pipe exposed for permanent stress from Morgrip).

Material Evaluation

- SENT Testing, ECA and FE simulation.
 - An assessment of the risk for fracture during the accidental lifting operation

Conclusion

- SENT testing for both H-charged and uncharged specimens give ductive tearing and high toughness values
- ECA analysis of the accidental lifting operation clearly indicates that the critical flaw size is way beyond the maximum workmanship criterion
- ECA analysis of the accidental lifting operation shows significant robustness against ductile crack extension from a 1.5mm deep around the pipe circumferential crack.

Project Execution Phase

Focus Areas

- Access for Repair
- Performed photogrammetry survey and created a 3D model early in the project. 3D model used for all tools and equipment development.
- Dummy manifold and well base fabricated based on 3D model and extensively used during testing and site integration.

Use of Dummy Models

Coating Removal Tool - Development

Coating Removal Tool – Offshore

Pipe Cutting

Running Tool - Development

Running Tool – Ready for Deployment

New Technology

Morgrip with Stab Receptacle

Caps for permanent plugging of ½" hydraulic small bore pipes.

Permanent Plugging of 2" Methanol line.

Final Status

Status Manifold N1 After Repair

- •6" pipe integrity retained with no de-rating of the pipe or deviations from original design.
- •6" pipe plugged in accordance with Statoil's requirements to provide a permanent passive barrier.
- •2" and ½" pipes successfully plugged subsea.

Acknowledge

hydratight

PROVIDING SAFE RELIABLE CONNECTIONS

Thank you

Espen Fløtre

Project Manager

esflo@statoil.com, tel: +47 91 13 11 53

www.statoil.com

