

Using subsea wireless to improve safety and reduce intervention costs

Brendan Hyland Chairman WFS Technologies

FFU 2012

WFS Background

WFS Technologies

- Founded 2003
- UK & USA

- Communications
- Navigation
- Power transfer

Field proven product

Field experience in N Sea and GoM

RF Communications Through-Water

First RF Communications

- Morse developed first experiments in 1842
- Tesla (1892): presented a submarine comms concept to US Navy
- Through-water research peaked 1950s-60s

Technology developments

- Digital Signal Processing (DSP)
- Modelling capability
- Antenna design

Market need

- Machine to machine communications
- Distributed networks; undersea vehicles
- Communication through water to air boundary
- Harmless to sea life

Attributes of Low Frequency Radio

Pros Cons

- Unaffected by turbidity/bubbles
- Non-line-of-sight performance
- Immune to acoustic noise
- Transits water/air
- Transits water/seabed
- Unaffected by water depth
- Up to I0Mbps
- Complementary to other wireless technologies

- Range-limited through water
- Susceptible to EMI (Electromagnetic interference)

Range/Bandwidth Performance

Range performance depends upon

- Conductivity
- Stratification
- Data Rate
- System parameters
 - Self Noise
 - TX power,
 - Rx sensitivity
 - Antenna Size
 - Signal processing

Data rate

Improving safety and reducing intervention costs with wireless

- Mooring Line Monitoring
- Wireless Black Box Recorder
- Wireless LMRP to BOP connector
- Wireless Riser Monitoring System
- Wireless Integrity Management sensors
- Wireless Camera
- Subsea Control System Maintenance
- Wireless Earth Leakage monitoring

Mooring Line Monitoring

Problem:

- Conventional mooring line monitoring systems use acoustic
- Reliability issues in adverse sea conditions
- Solution:
- Radio or hybrid radio-acoustic monitoring of load cells
- Radio immune to noise from heavy weather
- → Increased reliability of mooring line monitoring
- → Increased safety

Wireless Black Box Recorder

Problem:

- Local recording and retrieval of critical sensor data
- Local recording and retrieval of maintenance life history of subsea assets
- Rapid access to critical data

Solution:

- "wireless black box recorder" to record data while attached to subsea structure
- Data can be recorded but also transmitted wirelessly to nearby ROV
- Signal emitted if displaced, to allow box to be located
- → Increased integrity of critical assets
- → Faster, more accurate response in emergencies

Wireless LMRP to BOP Connector

Problem

- Standard connection between LMRP and lower BOP stack made with wet-mate connector
- Multiple disconnects and reconnects compromises connectors leading to failure
- Failed connector on BOP leads to extended downtime
- Re-mating connectors is time-consuming, precision operation

Solution

- Wireless data + power
- Radio delivers reliable, non wet-mating communications
- Comms link set up prior to re-connect
- Power transferred by inductive coupling
- → Ultra high reliability connection
- → Increased uptime

Wireless Riser Monitoring System

Problem:

- Riser life reduced when insufficient data from sensors in critical locations to determine condition
- Challenging and/or expensive to use umbilicals in optimum locations
- Solution:
- Deploy wirelessly enabled sensors
- Harvest data to nearby ROVs or via wireless networks to surface
- Wood Group Integrity Management (MCSKenny), Fugro, WFS
 - jointly developed Optima Wireless to monitor deep water risers and fatigue 🌆
 - Response monitored in **real-time** to predict signs of early failure
 - Tracking of **real-time** load on system allows an accurate estimate of "safe working life"
 - Low cost installation on green and brown field sites
 - Sensors can be fitted in 'hard to reach' locations
- → Extend equipment life
- → Reduction risk of environmental incidents

Wireless Integrity Management Sensors

- Problem:
- Lack of local power or data : expensive to retrofit integrity management sensors on ageing infrastructure
- Lack of reliable data can lead to environmental incidents and significant down-time
- Solution:
- 'sealed for life' integrity management sensors
 - WiSPureCP: cathodic protection system with integrated data logger
 - ClampOn DSP Corrosion-Erosion Monitor
- Wireless retrieval of data using broadband radio comms to ROV or AUV
- Wireless recharging by ROV or AUV
- → Extended life of asset;
- → lower maintenance costs;
- → lower risk of major incident

Sand Erosion
Monitor

Cathode Monitor

Wireless Camera

Problem

- 'perspective' when undertaking complex ROV tasks
 - Hot stabs
 - Construction
- Avoid 2nd ROV in the water
- Avoid jumpers
- Solution
- Wireless camera clamped near to target
- Real time streaming video during precision operation
- → Increased ROV safety
- → Reduced operating times

Subsea Control System Maintenance

- Problem
- Subsea systems with CPUs require maintenance
 - Remote on/off switch
 - Re-flash memory
 - Interrogate and troubleshoot
- Solution
- Integrated radio to provide switch and high speed 2-way data download
- → Reduced commissioning and maintenance costs

Wireless Earth Leakage Monitoring

Problem:

- Conventional earth leakage systems are unable to monitor cables through a subsea transformer
- Time consuming and expensive to locate and repair earth leakages

Solution:

- Install wirelessly enabled subsea earth leakage monitoring system on far side of transformer
- ROV interrogates earth leakage monitor
- → Earth leaks located more rapidly and at reduced cost
- → Reduced down-time

V-Slim Subsea Earth Leakage Monitor

Subsea Wireless Group (SWiG)

WFS is part of the Subsea Wireless Group (SWiG), a not-for-profit organization, established to promote and direct the use of through water communication technologies within the oil and gas sector.

www.subseawirelessgroup.com

Subsea Wireless Group (SWiG)

- SWiG members are working together to define standards that facilitate interoperability between users subsea wireless technologies
- SWiG will engage with relevant standards bodies, encourage the integration of wireless technologies, and promote best practices across the industry
- SWiG provides a forum for new ideas to be shared, and for business connections to be made
- Formally known as Subsea Radio Users Group (SRUG) but focus shifted after substantial industry interest.

membership@subseawireless group.com

Thank You!

Brendan Hyland Chairman WFS Technologies

brendan@wfs-tech.com

+4478 01063450

www.wfs-tech.com

wireless modem

Product Specification

Operating Range/Environment:

Range internal antenna: to 1.5m through seawater

external antenna: to 3m through seawater

Depth Rating 100m (standard)

350m—4000m (option)

Operating Temperature -10 to + 35°C

-20 to + 50°C Storage Temperature

Interfaces:

I/Os 2 x 4-20mA inputs

> 4 x Digital outputs 2 x Digital inputs

Data Interfaces RS232, RS485, RS422, Analogue (standard)

Ethernet (optional)

Data Rate 2400 kbaud

Power Supply Choice of 24V external power supply or rechargeable internal batteries

Power Consumption 0.05W - 0.18W Rx

0.6W Tx

0.05W Idle

Physical Characteristics:

Dimensions PCB Board size: 90mm x 60mm or 78mm x 53mm

> 100m—350m enclosure: 191mm x 85mm 4000m enclosure: 465mm x 170mm

100m-350m enclosure

91 mm × 85 mm

OEM version of \$100 (Analogue inputs)

4000m version of \$100

OEM version of \$100

78mm x 53mm

90mm x 60mm

wireless modem

Safety: Wireless Backup

- Control maintained in the event of equipment failure
- Real time, low latency control signals
- Wireless initiation of an alarm, an emergency disconnect sequence or valve actuation
- Additional layer of redundancy for challenging operations
- Unaffected by turbidity, aeration or acoustic noise

Improved Efficiency: Subsea Monitoring

- Remote monitoring on subsea equipment (e.g. load, strain)
- Sensors can be located in "hard to reach" areas
- No hard cabling, simple deployment and retrofit
- More data for operational decision-making
- Extend working lifetime of deployed assets

Integrity Management: Wireless Sensors

- Standard interfaces for wireless data communication with underwater vehicles
- Wireless harvest of data from subsea sensors
- Simple and flexible deployment of wireless subsea sensors
- More frequent and easier access to data no wet mate connectors
- Reduced cost of intervention, surface support not required

CONTACT US

WFS Technologies

7 Houstoun Interchange Business Pk Livingston, Edinburgh EH54 5DW, UK

Tel: +44 (0) 845 862 6600

WFS Subsea

Tritech House, Peregrine Rd, Westhill Business Park, Westhill, Aberdeen, AB32 6JL, UK

T: +44 (0) 845 862 1584

WFS Subsea

777 N. Eldridge Parkway, Suite 280, Houston, TX 77079-4497, USA

Tel: +1 (832) 460 4435

wireless modem

Product Specification

Operating Range/Environment:

Range internal antenna: to 1.5m through seawater

external antenna: to 3m through seawater

Depth Rating 100m (standard)

350m—4000m (option)

Operating Temperature -10 to + 35°C

-20 to + 50°C Storage Temperature

Interfaces:

I/Os 2 x 4-20mA inputs

> 4 x Digital outputs 2 x Digital inputs

Data Interfaces RS232, RS485, RS422, Analogue (standard)

Ethernet (optional)

Data Rate 2400 kbaud

Power Supply Choice of 24V external power supply or rechargeable internal batteries

Power Consumption 0.05W - 0.18W Rx

0.6W Tx

0.05W Idle

Physical Characteristics:

Dimensions PCB Board size: 90mm x 60mm or 78mm x 53mm

> 100m—350m enclosure: 191mm x 85mm 4000m enclosure: 465mm x 170mm

100m-350m enclosure

91 mm × 85 mm

OEM version of \$100 (Analogue inputs)

4000m version of \$100

OEM version of \$100

78mm x 53mm

90mm x 60mm

wireless modem

Safety: Wireless Backup

- Control maintained in the event of equipment failure
- Real time, low latency control signals
- Wireless initiation of an alarm, an emergency disconnect sequence or valve actuation
- Additional layer of redundancy for challenging operations
- Unaffected by turbidity, aeration or acoustic noise

Improved Efficiency: Subsea Monitoring

- Remote monitoring on subsea equipment (e.g. load, strain)
- Sensors can be located in "hard to reach" areas
- No hard cabling, simple deployment and retrofit
- More data for operational decision-making
- Extend working lifetime of deployed assets

Integrity Management: Wireless Sensors

- Standard interfaces for wireless data communication with underwater vehicles
- Wireless harvest of data from subsea sensors
- Simple and flexible deployment of wireless subsea sensors
- More frequent and easier access to data no wet mate connectors
- Reduced cost of intervention, surface support not required

CONTACT US

WFS Technologies

7 Houstoun Interchange Business Pk Livingston, Edinburgh EH54 5DW, UK

Tel: +44 (0) 845 862 6600

WFS Subsea

Tritech House, Peregrine Rd, Westhill Business Park, Westhill, Aberdeen, AB32 6JL, UK

T: +44 (0) 845 862 1584

WFS Subsea

777 N. Eldridge Parkway, Suite 280, Houston, TX 77079-4497, USA

Tel: +1 (832) 460 4435

Through-water broadband radio data link

seatooth® **\$300** uses the latest patented radio frequency (RF) technology to enable high data rate transmission over a short range, through-water and ground and highly accurate navigation at short range.

Applications include high speed data transfer between underwater sensors and unmanned underwater vehicles (ROVs and AUVs).

TARGET APPLICATIONS

- UUV data harvesting
- UUV communications
- Wireless camera
- Inter-asset communications
- AUV docking solutions
- Inspection of ocean energy devices
- Test tank communications

CONDITION MONITORING

WIRELESS CAMERA

CONSTRUCTION SUPPORT

WIRELESS DATA AND POWER

INTER-ASSET COMMUNICATIONS

THROUGH-ICE COMMS

INSPECTION: OCEAN ENERGY DEVICES

AUV DATA & POWER

Through-water broadband radio data link

FEATURES

- Two-way communication
- Crosses water/air interface
- Low latency
- High data transfer rate
- Supports mesh networking
- Easy integration with third party systems

BENEFITS

FLEXIBLE DEPLOYMENT

- In littoral waters or near offshore facilities and vessels generating acoustic noise
- In shallow/congested environments such as harbours or estuaries
- · In high turbidity or shallow water
- Immunity to multi-path
- Immunity to thermal layers/refraction
- Negligible Doppler shift

LOW IMPACT

- Avoid wet-mating of connectors at depth or complex vehicle docking
- Unobtrusive and covert
- Does not interfere with acoustic sensors or sonar

IMPROVED OPERATIONAL PERFORMANCE

- Reduced operating costs and time
- Reduced power consumption
- Shorter download times, and faster access to data
- Connects to existing communications infrastructure (GSM, GPRS, VHF, UHF, Web)

TECHNICAL SPECIFICATIONS

SYSTEM PERFORMANCE

- Range: 2m 10m through seawater
- Data Rate: 156 kbps
 - I mbps option available on request

ANTENNA

- 0.5 m Squariel (standard)
- 0.1m Im (custom)

DATA

- Interface Transparent Ethernet
- Compatible with TCP/IP & UDP packets

POWER REQUIREMENTS

- Each unit
 - Transmitting 24Vdc, 660mA
 - Receiving 24Vdc, 190mA
- Supply can be from external battery packs or from interface to third party supply

ENVIRONMENTAL

- Depth rated to 350m
 - 4000m available on request
- Temp. operating -10 to + 35°C
- Temp. storage -20 to + 50°C

PHYSICAL

Size: 250mm x 150mm

CONTACT US

WFS Subsea

7 Houstoun Interchange Business Pk. Livingston, Edinburgh EH54 5DW UK

Tel: +44 (0) 845 862 6600

WFS Subsea

Tritech House, Peregrine Rd, Westhill Business Park, Westhill, Aberdeen, AB32 6JL, UK

T: +44 (0) 845 862 1584

WFS Subsea

777 N. Eldridge Parkway, Suite 280, Houston, TX 77079-4497, USA

Tel: +1 281-531-7417