

Accurate bi-wave ultrasonic stress measurements in already installed bolts in subsea structures

AkerBP and FORCE Technology

Background

Measure tension in already installed bolts subsea?

Theory

Development

Current

Limitation of Torque

$$T = K \times F \times D$$

T = Input torque

F = Tension in bolt

D = Nominal diameter of the bolt

K = Constant called "Nut Factor"

Variables that affect the Nut Factor:

Lubrication

Debris

Chips

Surface finish

Corrosion

Deformation

Friction

Geometry

Coating

Contact radii

Thread pitch

Perpendicularity

Tool Accuracy

Operator skill

Part Quality

... (and more)

Advantage of Ultrasonic measurements

Direct measurements of tension in the bolt, independent of Nut Factor

Mono-wave measurements

Compression

Bi-wave measurements

Compression and Shear

Mono-wave measurements

Mono-wave measurements

Pro:

Easy to use

Commercially available probes

Cons:

Requires baseline measurement

Requires flat ends

(Temperature dependent)

Bi-wave measurements

Valid for all bolts of the same batch! Ratio is <u>independent</u> of length

Bi-wave measurements

Pro:

Does not require known baseline

Easy to calibrate to new batch

Cons:

Two probes

Shear wave do not propagate in liquids

Sensitive to heat treatment

Requires flat and clean

(Temperature dependent)

Development

Shear Wave Probe

Couplant

Probeholders

Calibration curves

Current

Precision

Probe holder

Couplant

Conclusion

- Torque includes many variables, measure tension instead
- Mono-wave and bi-wave measurements possible
- Successful adaptation from topside to subsea use
- Still at an early stage, further testing necessary

Thank you

