

# An alternative power supply for subsea production at long distances

#### DELIVERS. EVOLVES. WHOLE LIFE SOLUTIONS FOR PIPELINE AND SUBSEA SYSTEMS

Vladimir Andreev Per Damsleth Petter Birkeland Joe Cross

# Content

- Arctic Prospects & Challenges
- Enabling Technologies & Gaps
- Power Demand & Supply
- Conclusions

**JPKENNY** 

## **Arctic Prospects**



- Up to 25% of the World hydrocarbon reserves
- Today's technologies make these reserves attainable
- Russian scientific knowledge provides solid foundation for development

## **Arctic Challenges**

## Unique combination of:

- Extremely low winter temperatures
- Ice coverage
- Deep seas
- Very large fields
- Ultra long offsets
- Extremely sensitive ecosystem

## We can not just use off-the-shelf solutions

# DELIVERS. EVOLVES.

# **Enabling Technologies**





- Long distance subsea power and communication
- Subsea processing



- High voltage subsea distribution & connection systems
- Long distance gas transportation systems

# **Technology Gaps**





- High Power DC / AC Subsea Inverters (145kV-450kV)
- Very High Voltage High Power Subsea Connectors
- Standards for interfacing subsea electrical equipment

## **Phased Subsea Developments - Ormen Lange**

## **Initial Phase**

- Initial Power investment is limited to template controls (up to 1MW)
- Duration approx. 10-15 years



## **Compression Phase**

- Large power investment when boosting needed in later life (100 MW)
- Allows time to develop needed technologies



# Large All-Electric Subsea Production System

## Phase 1

- > 4 x 8-slot templates
- > 28 x production wells
- ➤ 4 x water injection wells
- Two Umbilicals
- ➤ Two 10" MEG lines
- > Two 36"-42" pipelines
- Phase 2
  - Subsea processing
- Phase 3
  - Subsea compression



## **Power demand by All-Electric Subsea Production System**



| Subsea power consumer             | Power demand   |
|-----------------------------------|----------------|
| Control system                    | approx. 10 kW  |
| Valves                            | 1 kW to 350 kW |
| Water injection pumps (per well)  | 1 MW to 5 MW   |
| Multiphase pumps (per well)       | 2 MW to 5 MW   |
| Downhole pumps (per well)         | approx. 1 MW   |
| Subsea gas compression (per well) | approx. 5 MW   |
| Subsea separation and processing  | 10 MW to 50 MW |

DELIVERS. EVOLVES. WHOLE LIFE SOLUTIONS FOR PIPELINE AND SUBSEA SYSTEMS

## **Power supply to All-Electric Subsea Production System**

**Few Possibilities:** 

- Power transmission from shore;
- Offshore power generation
  - Surface
  - Subsea

## **Power supply from Platform**

•

•



- Platform based power generation is most common;
- Gravity Base Structures proven effective in Arctic
- Ice-resistant GBS platform applicable to deep Arctic seas likely to cost more than 4,5 Billion EUR.



- Special means of crew evacuation must be in-place for safe platform operation.
- In order to alleviate safety concerns unmanned platform should be considered

# **Power Transmission from Shore**





- HV/AC technology is limited to about 100-200 km.
- HV/DC requires high capacity inverters.



• High capacity subsea power cable is expensive (both materials and installation)

## **Subsea Power Generation**

- High development cost;
- Relatively low construction and operational costs;
- Very high voltage connectors and inverters not needed;
- Virtually unlimited expansion possibilities;
- High level of overall safety is achievable;

## **Autonomous Subsea Power Station**

- Nuclear power generation can be adopted from icebreakers propulsion (50MW-100MW)
- Can use present technology of subsea power distribution & connection systems
- Can be modular for simplified installation maintenance & repair
- Can be monitored and controlled from shore
- It doesn't require huge amount of raw materials

# **Cost Comparison**



WHOLE LIFE SOLUTIONS FOR PIPELINE AND SUBSEA SYSTEMS

## Conclusions

- ASPS has potential for powering future subsea field developments at lower cost – it deserves further investigation
- Russian scientific community and industry can provide important contribution
- A JIP should be formed to put in place standards and guidelines etc.



# **Thanks for Your attention**

DELIVERS. EVOLVES. WHOLE LIFE SOLUTIONS FOR PIPELINE AND SUBSEA SYSTEMS